26 Đề thi học kỳ II môn Toán Lớp 9 - Đề 18 (Có đáp án)

Bài 3: ( 2 điểm ) Cho Phương trình: ( m là tham số )

  1. Xác định m để phương trình có nghiệm.
  2. Xác định m để phương trình có hai nghiệm là x1; x2 sao cho .

 Bài 4: ( 1 điểm ) Cho hình chữ nhật ABCD có AB = 2.AD quay xung quanh cạnh AD. Tính 

               thể tích hình tạo thành biết AC = cm.

       Bài 5: (3 điểm) Cho đều nội tiếp đường tròn (O; R). Trên AB lấy điểm M (khác A, B), 

                      trên AC lấy điểm N ( khác A, C ) sao cho BM = AN

  1. Chứng minh bằng
  2. Chứng minh tứ giác OMAN nội tiếp được đường tròn.
  3. Tính diện tích viên phân giới hạn bởi dây BC và cung BC theo R.

     
docx 3 trang Phương Ngọc 05/02/2023 6080
Bạn đang xem tài liệu "26 Đề thi học kỳ II môn Toán Lớp 9 - Đề 18 (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docx26_de_thi_hoc_ky_ii_mon_toan_lop_9_de_18_co_dap_an.docx

Nội dung text: 26 Đề thi học kỳ II môn Toán Lớp 9 - Đề 18 (Có đáp án)

  1. ĐỀ 18 ĐỀ THI HỌC KỲ II Môn Toán Lớp 9 Thời gian: 90 phút Bài 1: ( 2 điểm ) a) Giải phương trình: 2x2 - 5x - 12 = 0 x 2y 6 b) Giải hệ phương trình: 3x y 4 Bài 2: ( 2 điểm) Trong mặt phẳng tọa độ cho prabol( P): y 2x2 a) Vẽ đồ thị ( P ) b) Bằng phương pháp đại số tìm tọa độ giao điểm A và B của (P) và đường thẳng (d): y 3x 1 2 2 Bài 3: ( 2 điểm ) Cho Phương trình: x 2 m 1 x m 4m 0 ( m là tham số ) a) Xác định m để phương trình có nghiệm. b) Xác định m để phương trình có hai nghiệm là x1; x2 sao cho x1 x2 x1x2 1. Bài 4: ( 1 điểm ) Cho hình chữ nhật ABCD có AB = 2.AD quay xung quanh cạnh AD. Tính thể tích hình tạo thành biết AC = 5 cm. Bài 5: (3 điểm) Cho ABC đều nội tiếp đường tròn (O; R). Trên AB lấy điểm M (khác A, B), trên AC lấy điểm N ( khác A, C ) sao cho BM = AN a) Chứng minh OBM bằng OAN b) Chứng minh tứ giác OMAN nội tiếp được đường tròn. c) Tính diện tích viên phân giới hạn bởi dây BC và cung BC theo R.
  2. ĐÁP ÁN VÀ BIỂU ĐIỂM Bài Câu Nội dung Điểm a a) Tìm được nghiệm x1 = 4 ; x2 = -3/2 1đ x 2y 6 x 2y 6 0,25 3x y 4 6x 2y 8 7x 14 0,25 1 x 2y 6 b x 2 0,25 2y 4 x 2 . Vậy hệ phương trình có nghiệm ( x = 2; y = 2) 0,25 y 2 a. Vẽ đồ thị (P): y 2x2 1đ Bảng giá trị 0,5đ x -2 -1 0 1 2 y 2x2 -8 -2 0 -2 -8 8 y 0,5đ 6 4 a 2 x -4 -2 2 4 6 8 -2 2 -4 -6 -8 -10 -12 -14 -16 b.Tọa độ giao điểm của (P) và (d) 1đ Phương trình hoành độ giao điểm của (P) và (d) là: 0,25đ b 2x2 3x 1 2x2 3x 1 0 1 1 - Xác định tọa độ M cần tìm là ( ; ) 0,25 2 4 -Xác định a, b, c 0,25 -lập được ' 2m 1 0,50 3 a 1 - xác định được pt có nghiệm khi ' 0 m 0,25 2
  3. - Tính được tổng và tích hai nghiệm 0,25 - Biến đổi biểu thức hệ thức đã cho thành pt m2 – 2m – 3 = 0 0,25 b - Giải tìm được m1= -1 (loại), m2 =3 ( nhận ) 0,25 - Kết luận 0,25 - Sử dụng pitago tính được bán kính đáy r = 2( cm) 0,50 và chiều cao hình trụ h = 1 ( cm) 4 - Viết đúng công thức và tính được thể tích hình trụ 0,50 V = r 2h 4 (cm3) 5 a) A M O N B H C n Xét OBM và OAN có: 0,25 Ta có: OA = OB ( Bán kính) BM = AN ( gt) 0,25 MBˆO NAˆO (Cùng bằng 300 ) 0,25 Vậy OBM OAN 0,25 b) Ta có: AMˆO BMˆO 1800 (kề bù) 0,25 Mà: ANˆO BMˆO ( OBM OAN ) 0,25 Suy ra: AMˆO ANˆO 1800 0,25 Vậy tứ giác OMAN nội tiếp được đường tròn 0,25 R c) Vì BC là cạnh tam giác đều nội tiếp (O; R) BC R 3 ; OH và 2 0,25 sđ BC 1200 R 2 n0 R 21200 R 2 0,25 S (đvdt) OBnC 3600 3600 3 1 1 R R 2 3 S BC.OH R 3. (đvdt) 0,25 BOC 2 2 2 4 R 2 R 2 3  3 Vậy S R 2 ( ) (đvdt) 0,25 viênphân 3 4 3 4 ( mọi cách giải khác nếu đúng vẫn cho điểm tối đa của từng câu. Bài hình chỉ chấm khi vẽ đúng hình)